If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2+16x-15=0
a = 64; b = 16; c = -15;
Δ = b2-4ac
Δ = 162-4·64·(-15)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-64}{2*64}=\frac{-80}{128} =-5/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+64}{2*64}=\frac{48}{128} =3/8 $
| 2x+6=(x+3) | | 1=6x+7x+1 | | (14x+9)(5x-7)=0 | | -13(5)+(-0.875*x)=-79 | | 3n+26=180 | | 3n+26=n | | 2x-7+5x-3+2x-2=9x-12 | | -13(5)+(-7/8)x=-79 | | 129=-15x+8 | | (x-50)+90=180 | | 3x+4x+-6=7+3 | | 5n+18=n | | w-14=-1 | | (x+2)÷2=8 | | 2x14+5=2x14+5 | | 68=4u-8 | | 44=x+22 | | 4-(2x-3)=6 | | w-8=-1 | | 4x+8=3x+32 | | x+125=x+55 | | 3z+8=-8 | | 2-(x+4)/(2)=11 | | 2x+(6-x)/(3)=-3 | | 400=0.7x | | N^2+4n-81=0 | | x5+3-(2)=0 | | 2x+5+2x+5=180 | | 2x+5+3x+4=180 | | (4x)/(5)-x=(-12) | | 3v-15=24 | | (4x)/(5)-x=-12 |